
Software Metrics & Associated Issues

A Literature Survey∗

Arvind Gopu
Graduate Student, Computer Science & Informatics

Indiana University, Bloomington, IN
agopu [at] cs.indiana.edu

December 19, 2003

Abstract

The importance of Software metrics has grown in the software engi-
neering community, especially in the past two decades with the develop-
ment of new and improved metrics. Metrics have been used more and
more in making quantitative/qualitative decisions as well as in risk as-
sessment and reduction. They give software professionals the ability to
evaluate software process. Thus it is crucial to reason any metric that is
proposed and validate it using standardized techniques. It is also impor-
tant to consider the psychological and economic aspects of using software
metrics because these metrics would be of no use if they are not used the
right way. This paper is an attempt to discuss some of these issues based
on a literature survey. Every attempt has been made to make it as concise
as possible, but in the process a few details could have been missed. We
strongly recommend the reader of this paper to refer the original papers
that are cited at various points.

∗Towards partial requirement of CSCI B665 - Software Engineering Management

i



1 Introduction

“What is not measurable, make measurable”, the great Galileo Galilei had said.
Measurement has always been fundamental to any engineering discipline and
software engineering is no exception. This is how Pressman [8], introduces
metrics. So what kind of measurement is he talking about? Obviously it should
be something that gives us the ability to evaluate software process – the design,
the code, the testing, etc. But does it end there? Probably not. Metrics also
cover the aspect of evaluating the final software product and a lot more.

Recently, the importance given to software metrics has grown in the software
engineering community. These metrics have been used more and more in making
quantitative/qualitative decisions as well as in risk assessment and reduction.
The past two decades especially have seen the development of new and improved
metrics and a lot of related efforts in validating those metrics. There have been
a number of publications to these effects. In this paper we have surveyed the
literature for some interesting papers on software metrics and validations that
have been proposed over them.

In section 2 we discuss some of the basic concepts of software metrics. We go
into the question of why we need metrics in the first place and also give a brief
description of the various classifications that have been in use in the software
engineering community. In section 4 we discuss some recently proposed metrics
- ones that are claimed to be better than traditional metrics. We also briefly
discuss some special cases where metrics are applied, for example in a database
application, in section 5. We mention some important issues related to metrics –
the human element being the most important one, in section 6 before concluding
with section 7.

2 Basics of Software Metrics

In this section we discuss some basic concepts of software metrics beginning
with the definition:

2.1 Defining Software Metrics

The definition of software metrics has taken various forms since its inception.
Metrics are quantitative measures that enable software people to gain insight
into the efficacy of software process and also pinpoint problem areas [8]. They
provide requisite information for quantitative managerial decision making as
well as support for risk assessment and reduction [5]. They can be considered
an objective mathematical measure of software that is sensitive to difference
in software characteristics [14]. According to the IEEE standard glossary of
Software Engineering Terms (adapted from [8]), they are “a quantitative mea-
sure of the degree to which a system, component, or process possesses a given
attribute.”.

1



The term “metric” itself refers to a wide range of activities that are related
to measurement in software engineering. These include [5]:

• Quantitative values characterizing properties of code

• Prediction models to predict resource requirements and end-product qual-
ity

• Quantitative aspects of quality control, etc.

Almost every metric has one thing in common – the motivation behind it; this
could be assessing cost and effort to be put in or assessing the quality of the
software. For example, one of the earliest metrics to measure code efficiency –
the Lines of Code (LOC) metric has been used in a model as simple as:

Effort = f(LOC)

There have been various other attempts to use, for example, LOC (and other
naive metrics) as a metric to measure aspects such as effort, complexity, etc. It
is pretty obvious that with the advent of newer programming languages these
models were not going to work because it does not make sense, for instance,
to compare LOC values of an assembly language program with a high-level
language program. Thus researchers started working on coming up with metrics
that were independent of the language used. We address some examples of such
metrics in section 4.

2.2 Need for Metrics

Having looked at some basics of software metrics, the next question that arises
in many a budding software engineering’s mind is why do we need metrics? And
if they are indeed useful to their cause? The answer to the latter question in
short is yes. Software metrics have been proven to be useful if applied in the
right way – this needs to be stressed. Application of wrong methods might lead
to failure of a metric but it is not really the metric which is to be blamed! Here
we state some arguments as to why we need software metrics:

• Without measuring software process or the quality of an end product, only
subjective evaluation is possible – not desirable.

• With robust measurements [8]:

– Requirements can be assessed better

– Error prone components can be identified at early stages

– Quality assurance can be improved

• Predicting resource requirement is another important use of software met-
rics

2



2.3 Classification of Metrics

There are many available classifications of software metrics. Most of these are
only different in a subtle way. A clear classification list is given in [11] and it is
based on the following factors:

1. Complexity

2. Quality

3. Effort/Competency

4. Performance

5. Style (and so on . . . )

There might be subclassifications based on this. For example, complexity is
usually sub classified on the following basis:

• Structural

• Logical

• Computational

• Lexical and

• Psychological

More often software metrics is categorized in a much broader sense as:

1. Process metrics and

2. Product metrics.

The former refers to attributes assigned to the process using which the software
was constructed. The latter refers to end product from both the user’s per-
spective as well as the developer’s. Gaffney has a more detailed and descriptive
classification in his work [14].

Process metrics are broadly sub-classified as:

1. Structure metrics: Comes in handy at the initial stages of a software’s
development. Examples are:

• Information flow

• Invocation complexity

• Review complexity

• Stability measure.

3



2. Code Metrics: Usually applicable only to latter stages of the software
development cycle. This is considered a drawback but yet it has been
proven to be useful for programmers and managers alike, especially when
used in combination with structure metrics. We will discuss a bit more
on that in section 4. Examples of code metrics are:

• Lines of Code (LOC)

• Software Science “effort” measure

• McCabe’s cyclomatic complexity

3 Validation of Software Metrics

With the plethora of metrics proposed it is critical that these metrics are thor-
oughly validated with the help of past experiences and new test data. There
are many views on how this validation should be carried out. For example,
Ejiogu [11] suggests that since metrics touch both structured programming and
mathematical measure theory, the two need to be combined when validating
software metrics. He goes on to expand on this point in the paper. This is
discussed in section 4.2. Usually metrics are validated using simple regression
or linear rank correlation techniques. These have proved to be effective in a lot
of simple cases.

But as the complexity of software grows and also as more and more metrics
are proposed, these simple techniques have been looked at, with more skepticism.
This has lead to more research in this area of validating software metrics, some
of which we will discuss in this paper. The reason why regression based models
may fail in validation of software metrics can be explained by Fenton et al’s
analogy [5]. They argue that regression models lead to misleading results and
cite a road accident analogy – just claiming that winter is the best time to drive
is flawed if the decision is just based on lower number of accidents; the fact that
lesser number of people actually drive in winter conditions is very crucial. We
will discuss their proposed technique in a bit more detail as well as talk about
one obvious advantage of better validation techniques – the fact that it churns
out newer and more effective metrics, in section 4

We will now discuss a novel validation technique proposed by Kafura and
Canning [13, 12]. They have based their validation on a realistic software system,
something they argue is important. The term resource in the context of this
paper (this is actually applicable in most contexts) refers to the combination
of component coding time and the number of component errors. Errors are
combined with the coding time because it is expected that some one will spend
time to fix the errors. The authors first point out that existing validations were
always based on linear or rank correlations to figure out how the metrics related
to the features of the system. They argue this approach is very limited in its
effectiveness because of three reasons:

• Use of single dependent variable means they fail to deal with possible
trade-offs between resources. This might mislead us to think the metric

4



failed though the failure indeed may have had to do with the validation
procedure. For example, the validation might relate number of errors
with a number of metrics (independent variables) but still might fail to
deal with trade-offs that can be made between resources.

• Use of single metric (independent variable) means only certain aspects
of software quality is measured. Even in attempts to use more than one
metric, the metrics have been from a particular class – structural or code
or the like as described in section 2.3 and it is strongly argued that these
classes measure different aspects of a software quality.

• Poor correlation between metric and resource might mislead us to think
the metric is a poor one if, for example, a component with a low metric
value ends up with a lot of errors. This is not necessarily true - it might
be the case where a wrong metric might have been used or there might
have been poor testing.

The main point to infer is that different classes of metrics measure different
aspects of system quality, so a single metric or multiple metrics from a class
cannot be successfully used to measure all quality related facets of a system.
The authors go on to give a description of the analysis they did with various
metrics. Their analysis is based on three considerations which are explained
below along with some information on the results of the analysis:

1. The first consideration is if significant differences in metric values imply
corresponding differences in errors and/or coding time. And does consid-
ering the two factors as a combination lead to a more pronounced relation-
ship between the metrics and the resources? The analysis shows that the
answer to the above questions is ‘yes’. Tabulated results using a combi-
nation of Information flow and Lines of code show that ‘easy’ components
have a small metric value while ‘difficult’ components have a higher met-
ric value. In this context ‘easy’ components correspond to ones that take
lesser time to code and also carry lesser number of errors whereas ‘difficult’
components are the ones that take longer to code and carry more errors.
The above mentioned trend is much more pronounced when both metrics
are considered at the same time.

2. The second consideration is if the metrics can identify trouble maker com-
ponents – ones which are more error-prone. Again, does using more than
one metric have an effect on this? Especially the authors are interested
in figuring out if structure metrics can find the trouble making compo-
nents in a software system so that more importance can be attributed to
testing those modules. Standard deviation from mean metric value has
been used to demarcate boundaries between outliers, extreme outliers and
non-outliers. Outliers are components with a value one standard deviation
away. Extreme outliers are components with a value twice the standard
deviation away. It was not easy to pick one best metric in this analysis.

5



The only inferences that could be made are relative – like which metric in
each class is best. Also it has been found that using three or four metrics
for this aspect of testing is ideal. This is empirical data though without
much theoretical backing.

3. The last aspect the authors have considered is the number of false positives
if we could call it that. Essentially computing the number of high metric
values without an associated error or high coding time is important. Safety
factor – the percentage of components which do not fall in the outlier
category for any of the metrics under use – is another factor to take into
consideration. The decision to use a particular metric also depends on
economics of concerned party using the metrics. The authors have some
numbers to support their analysis for this aspect as well as the above
mentioned ones in the paper [13].

4 Improved Metrics

As mentioned earlier, one of the main drawbacks of metrics is the fact that
most metrics address only one aspect of the multifaceted software development
process. Thus a traditional metric might fail to take into consideration, for
example, the trade off between two resources because its dependent variable is
only one of those resources. Researchers have tried various methods to overcome
this problem. One of those methods which is more used than any other is
combining metrics from various classes to give a more general picture.

4.1 Causal Models for Metrics

To illustrate how a single metric can be proved to be ineffective and how smart
use of combination of the same metrics can produce better results we discuss
a proposition by Fenton et al [5]. We had made a brief mention of this in the
previous section, now we will give a bit more detail. Just to recollect, the term
resource especially in the context of this paper refers to the combination of
component coding time and the number of component errors since the latter is
expected to be fixed by some one with expenditure of time.

The authors argue that most metric approaches use regression based models
for estimating resource requirements as well as error prediction. and do not
give much insight in terms of how risk can be reduced. The authors suggest
that factors like causality, uncertainty, etc should be considered and to achieve
that they recommend use of Bayesian nets and such in modeling the metric
approach.

So why does a regressed based model not suffice? To answer that question, a
useful and a common analogy – again briefly mentioned in the previous section
– to consider is the correlation between month of the year and the number of
fatalities due to road accidents. Unless cause and effect is looked at with the
correct perspective, it is possible to end up with the awfully wrong conclusion
that winter is the best time to drive since figures would indicate least number

6



of accidents in winter. Conditions like road condition, weather, etc need to be
taken into consideration which a normal model would not. This is the pith of
the authors’ argument. There is a basic model shown (pictorial) in the paper [5]
which relates size and additional factors to the effort put in/quality produced.

The use of pre-release defects as an indicator of quality is also questioned.
Knowing that there were a large number of defects during the coding stage does
not mean there will be a lot of bugs in the post release version too. To emphasize
this, an analogy can be used – predicting that a person who has eaten a heavy
lunch will also eat a heavy dinner, is this a sensible inference? A thorough
analysis shows that indeed fault prone modules in the post release version were
ones that revealed no or very small number of pre-release faults, i.e., they could
have been validated lesser. This leads us to a more intuitive conclusion than the
previous argument. Also this indicates that amount of testing is another factor
which should be built in to quality/error predicting models. Similar is the case
with operational usage and resource constraints associated with any project.
Limited historical data availability is another constraint basic regression models
suffer from though it is not clear how newer models can overcome it.

The answer to many of the above mentioned problems seems to be use of
causal models, for example Bayesian Belief Nets (BBN). Another method which
is indicated to be closely related is the Process Simulation method. A picture of
a typical application of BBNs to software engineering and metrics is shown in the
paper. A typical BBN is a network which has an associated set of probability
tables. Each node in the network represent an uncertain variable while each
edge represents a causal relationship. The above mentioned probabilities would
be used to indicate the probability a node is in a particular state. It is argued
that causal models like ones which use BBNs can:

• Handle diverse process and product variables

• Can correlate with empirical evidence as well as expert predictions

• Uncertainty and incomplete information

• Avoid introduction of additional overhead or at least keep it at a minimum

Those advantages aside, the method involves building the BBN probability
tables using both empirical data and expert predictions. The authors claim to
have developed tools to compute these probabilities in huge scales very quickly.
The resulting BBN as the one shown in the paper [5] will contain both vari-
ables with empirical/expert data and variables which are being predicted – for
example, post release errors. New evidence is periodically used to update the
variables representing known data. The authors argue that use of BBN enables
them to compute all probabilities including the unknown ones (in terms of em-
pirical data), this is in fact claimed to be one of the main advantages of their
method. They have a figure representing their model and also one showing a
sample BBN and how their model worked in evaluating unknown variables to
have values as expected. In the end the authors also mention the need for a

7



simple interface between complicated metric models and people who manage
software – managers would not want to figure out how BBNs work, they would
rather prefer to get results out of a partial black box, partial so that they are
kept interested.

4.2 Mathematical Measure Theory for Metrics

In this section we discuss the views put forward by Ejiogu [11] in proposing
a unified theory for software metrics based on mathematical measure theory.
There have other researchers who have suggested the use of formal frameworks
for metrics and pointed out the advantage of doing so. For example, see Purao
et al [1]. Coming back to Ejiogu’s work, the main argument in his paper is that
mathematical measure theory is directly applicable to metrics. The fact that
structured programming is analogous to tree design is cited and it is suggested
that the tree structure be advanced as a formal space for defining software
metrics.

Also use of count of components instead of the traditional lines of code met-
ric is suggested to get a better sense of size of software. Each component can
be represented by a node in a tree structure with the usual parent-child rela-
tionships. The author also argues that factors like software behavior, feedback
effects of using metrics should not be ignored. Another point that the author
makes is about the myth that complexity does not depend on size of a module;
it might be the case at times, but usually it is easy to prove that structural
complexity has a direct effect on the size of a component. This should be taken
into consideration.

Moving on to the propose metric itself, the author argues that unlike usual
metrics which do not satisfy basic mathematical measure rules, the proposed
one satisfies the null condition as well as the conditions of monotonicity and
countable sub additivity. Thus if there is a measure µ, then:

• For an empty set φ, it should satisfy µ(φ) = 0

• For A ⊂ B, µ(A) ≤ µ(B)

• µ(∪iAi) ≤ Σiµ(Ai)

The author has made use of the fact that structured programming allows the
use of tree structure to present a unified theory for software metrics, one that
satisfies the above mentioned conditions. Notions like union, intersection, com-
plements are inherently built-in in trees. To put it simply, a software program
refined into simpler sub programs till its monadic function limit (leaf nodes in
the tree) can be represented as a tree structure. This phenomenon of refine-
ment of a problem is referred to as nesting. There is another phenomenon called
twinning in which the nodes split into two or more child nodes – the factor of
splitting being twin factor. The above mentioned phenomena correspond to
data structure terms – stacks and bundles respectively. Deeper the nesting,
more complex the problem is and similarly larger the bundle, bulkier is the
problem.

8



A numerical metric for structural complexity is defined:

Sc = L ∗ Rm ∗ M

where
L is the level in the tree
Rm is the root node’s twin number and
M is the number of monads

Having defined the terms described above the author goes on to define some
terminology relating trees to software programs. For example:

1. Complex or node

2. Height of a node

3. Level of a tree

4. Subtree & Maximal subtree

5. Monad

6. Nesting & Twinning, etc.

Most of these are common tree terminologies; the terms nesting and twinning
have been explained previously. Using these terms, the authors finally define
metrics that can be used to evaluate software:

• Mass/size (Mx/Sz)

• Structural complexity as defined previously

• Degree of structural complexity

• Degree of structuredness

• Degree of maintainability, etc

Expanding on these terms is out of the scope of this paper.

5 Special Cases

In this section we discuss some specialized software metrics applied only in
certain domains/methodologies. For example, Object Oriented Programming
paradigm and its associated design methodologies require a different set of met-
rics from common ones because of their unique nature. A variety of metrics have
also been proposed specifically for use in database applications, software reuse
and so forth. We will briefly discuss Object Oriented software metrics and a
metric for database applications in the following sub-sections. For more details,
we suggest the reader to refer the papers cited in the following sub-sections:

9



5.1 Object Oriented Software Metrics

Object Oriented (OO) Software design has gained in importance over the past
several years. Obviously software engineering folks are trying to be as efficient
as possible while using this technique. But it so happens that sometimes they
try to do so without proper backing in terms of theory or in terms of how
their efficiency is measured. Existing metrics used in functional programming is
bound to fail when applied to OO systems. The reasons are not hard to figure
out. In this section we briefly discuss the important reasons why it is so and
also some proposed methods in the literature. Of course it is not within the
scope of this paper to go into too much detail; a separate paper like this one
can be written just about object oriented metrics.

Some papers we found to be good starting point in understanding object
oriented metrics and associated aspects are Purao et al [1], Bellin et al [10] and
Dandashi [3]. We believe that there are a number of good – or even better –
papers about object oriented metrics available in the literature, especially in
the recent times. There are a lot of aspects which are unique in object oriented
software design. These are summarized in no particular order of importance
below:

1. The OO way of structuring software into classes, methods and such usually
means, a metric like Lines of Code (LOC) is not applicable to it. But
factors like number of methods, number of classes, number of messages
passed between classes and methods – decides how tightly coupled the
entities are, number of agent classes, depth of inheritance, breadth of a
class, ratio of number of methods to classes, etc., could prove extremely
useful. This is what Bellin et al propose in their paper [10] .

2. The paper mentioned in the previous point is quite basic and uses naive
measures. The paper by Purao et al [1] is much more extensive. The
authors of this paper have essentially surveyed a number of metrics ap-
plicable to object oriented software. They have suggested a framework
which could be used in these systems. They also have a nice dimensional
classification of OO metrics based on: direct and indirect metrics on the
X-axis combined with elementary and composite metrics on the Y-axis.
They go on to provide a formal framework to object oriented metrics, the
description of which is out of the scope of this paper.

3. Dandashi [3] addresses a few related issues like applying existing (func-
tional design) metrics to object-oriented systems and how the results cor-
relate with expert prediction in certain cases and so on.

5.2 Metrics for Database application

In this section we quickly skim through a special case of using metrics. This
is a proposal for use of a metric called “Database Points” (DBP) on database
applications [7], more specifically on MS Access based ones. Extending it to

10



other database systems should be easily possible. Another thing which is worth
mentioning is the fact that this metric is quite similar in semantics to the Func-
tion Point (FP) metric. This paper illustrates that in spite of differences in
structural and functional aspects of database systems, applying metrics need
not be done too differently.

The DBP metric is based on a typical organization of Access applications –
usually consisting of five components: tables, relationships, transactions, forms
and reports. Thus the authors propose five factors to their metric which they
finally aggregate much the same way as function points are collected [8]. Each
factor will be assigned to a difficulty level category – simple or average or com-
plex (again this is a common method). Refer table 1 in the paper [7] for more
details about this.

Going into a bit more detail, the authors classify each factor into sub-factors.
For example, the table factor is sub-classified to sub factors like number of fields
per table, properties per field, etc. As mentioned earlier, after each factor is
assigned to a difficulty level category, a weighted average is computed, the result
of which is the DBP metric score. Of course the authors have done tweaking of
parameters sets and such to improve the effectiveness of their metric. There is
also some empirical results shown in the paper.

5.3 Metrics for Software Evolution

Software evolution is another related area in which attempts to use metrics
have been made. Mens et al provide a overview of such application of metrics
in analyzing and improving software evolution in their paper [4]. They describe
how it can be done in two ways – predictive and retrospective. Obviously
predictive application of metrics to evolution of software is a bit more important
since it can give insights about critical parts of the software even before it is
developed.

In attempting predictive analysis of software evolution, the authors classify
the software into different parts such as evolution-critical, evolution-prone and
evolution-sensitive parts. The first term refers to parts of software that need to
be evolved due to lack of quality – this might be due to a variety of reasons.
The second term refers to parts that are likely to be evolved. The third term
refers to parts which can lead to problems as it evolves. The authors describe
these and also give details about how they can be used in their paper [4]. They
also discuss retrospective analysis and suggest some future works in this area.

6 Constraints in Use of Metrics

In this section we look at factors which constrain the use of software metrics.
These factors could be human, economic feasibility of applying metric programs
and so forth. Here we concentrate on the human aspect and illustrate how it
constrains the effectiveness of metric programs. Software designers and devel-
opers can lose interest in using metrics due to at least two reasons: one is the

11



degree of involvement of the concerned person, almost a purely psychological
factor while the other is ease (or rather the difficulty) of metric use. We will
look at these two factors in a bit more detail in the following sections – the
former in section 6.1 and the latter in section 6.2.

6.1 Individual Involvement in Metric Development and

Application

To illustrate the importance of individual involvement in developing and apply-
ing metrics to software development, we discuss a case study (paper) conducted
by Slaughter [9] at Carnegie Mellon. In this paper, the author has researched
and tried to explain why is it difficult to sustain a metrics program. According
to empirical evidence only one in six metrics survive to see a second year of
implementation. Is there a specific reason for this phenomenon? That is what
she has researched on.

The author quotes some previous works and views that it is not the metrics
themselves but rather resistance from management as well as developers which
has lead to ineffectiveness of metrics – more of a cultural and psychological
reason. Then she goes on to explain results from her case study. In the context
of this paper, metrics are considered to be a feedback while the goal corresponds
to the objective of the metrics. This could be considered a general notion. The
author has worked on three hypotheses:

1. If the individual’s perceived validity of and awareness about the metric is
high, then he/she is bound to use it more (effectively).

2. If there is a high level of individual participation in setting the goals of
a metric, then again the metric is bound to be used more. A couple of
previous works on this is cited to emphasize the importance of managers
having subordinates participate in setting project goals (which correspond
to the metrics’ goals).

3. Considering the above two hypotheses as a base, it is argued that effec-
tiveness of metrics will ultimately depend on how frequently it is used. As
the amount of feedback increases, it will be more effective.

After proposing the above hypothesis, the author explains the conceptual
model based on the the same and also her methodology in analyzing a real
time system. This includes a lot of manual paper work in which managers and
developers had to do interviews, surveys and the like. Some of the main points
that came out of the analysis are listed below. From both the developers’ and
maintenance personnel’s perspective the main issues reported were:

• Lack of time to complete defect reports

• Negative consequences of reporting defects

• Not enough feedback from higher ups after the subordinates put in lot of
time and effort turning in metric reports

12



• Not enough communication between developers and maintenance folks

• Function points are very subjective

• The participants did think that detecting and trying to prevent defects
was a good thing to do

• Also it was agreed that function points can give useful insights in a lot of
situations

The author at the end also gives some statistics with respect to ratio of folks
who use metrics effectively in various levels – managerial, designer, developer,
etc.

6.2 Ease of Metric Use and Overhead

Another important factor to consider when dealing with the human element is
the ease or the difficulty of metric use. It has been proved time and again that
if the overhead – collecting and analyzing data – of using metrics is really high
then developers and managers stop using them effectively after a short period
of time. Johnson et al discuss exactly this point in their paper [2]. They have
delved into the reasons behind the failure of Carnegie Mellon (CMU)’s Personal
Software Process (PSP) in terms of longevity of use.

The PSP project [6] was started with the objective of shifting the perspec-
tive of looking at metrics from an organizational level to an individual level.
The system works by collecting size, time, defect data, etc from a project de-
velopment team (on an individual basis) and then doing analysis on this data
to improve project estimation and quality assurance. There were some basic
assumptions – analysis of metric data can prove beneficial to any individual
and that developers will continue to use those metrics for a long period of time.
Johnson et al argue that PSP, in spite of the fact that it provided useful in-
sights for software engineering students in quality assurance, is not used once
the students quit the academic setting.

The authors of [2] then go on to discuss two of their own systems which
facilitate, up to varying degrees, the collection and analysis of metric data. Leap
was a system developed by these folks (references are available in the paper) and
it automated the analysis part of the above stated problem. Yet they realized
to their surprise that this system also failed to be used after a short period of
time. This is argued to be due to the common requirement in both PSP and
Leap, what the authors call “context switching” – the fact that the developers
still need to switch between their primary task of developing software and their
secondary task of collecting metric data.

To circumvent the problem with context switching, the authors have devel-
oped a new system called Hackystat [2] which automates both the metric data
collection as well its analysis. They describe the architecture of their system in
the paper. It consists of sensors associated with development tools which con-
tacts a web-server whenever there is some newly available metric data. Thus

13



metric data is periodically collected and stored in an XML database and also
analyzed automatically. If there is any odd or important phenomenon found in
the analysis, the users are notified. Developers can also login and take a look
at their performance and the like. This sounds like a reasonable way of dealing
with the above stated problems.

The new system described in the previous paragraph does have its own
drawbacks as the authors themselves admit. One of the main concerns has
to do with privacy of the developer. As it is obvious, the system maintains
detailed logs of every relevant step taken by the programmer, so developers
might get apprehensive or irritated by the “big brother” notion the system
brings in. Another important drawback of a system like Hackystat is its extreme
programming language dependence. It will be very hard to generalize a system
like this. Yet there are quite a few advantages too. The system does not suffer
from problems like users forgetting or intentionally avoiding collection of metric
data.

7 Conclusion

In this paper, we have attempted to give an introduction to software metrics
and then go on to show improvements, validations performed on them, etc.
Most of the content as has been indicated by various citations is adapted from
various publications in the literature. It is clear that software metrics are here to
stay and that the software engineering community is bound to use metrics a lot
more in the coming years. Just to recap, metrics give us the ability to evaluate
software process as well as the final software product. They are used in making
quantitative/qualitative decisions as well as in risk assessment and reduction.
We have tried to show why validating metrics is crucial in producing effective
ones. Some new improved methods have been explained briefly. Of course a
paper like this would not have been complete without mention of the effect of
the human element – on the use of metrics in this case. We have attempted to
explain some issues in this aspect as well. In essence this paper can be considered
a starting point to learn about software metrics since it contains information
from a variety of sources.

References

[1] Sandeep Purao and Vijay Vaishnavi, Product metrics for object-oriented
systems, ACM Computing Surveys (CSUR), Volume 35, Issue 2, pp 191-
222, 2003

[2] Philip M. Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Car-
leton Moore, Jitender Miglani, Shenyan Zhen and William E. J. Doane,
Beyond the Personal Software Process: metrics collection and analysis for
the differently disciplined, Proceedings of the 25th international conference
on Software engineering, Portland, Oregon, pp 641-646, 2003

14



[3] Fatma Dandashi, A method for assessing the reusability of object-oriented
code using a validated set of automated measurements, Proceedings of the
2002 ACM symposium on Applied computing, Madrid, Spain, pp 997-1003,
2002

[4] Tom Mens and Serge Demeyer, Future trends in software evolution met-
rics, International Conference on Software Engineering, Proceedings of the
4th international workshop on Principles of software evolution, Vienna,
Austria, pp 83-86, 2001

[5] Norman E. Fenton and Martin Neil, Software Metrics: Roadmap, Interna-
tional Conference on Software Engineering, Limerick, Ireland, pp 357-370,
2000

[6] Watts S. Humphrey, The Personal Software Process (PSP), CMU-SEI-
2000-TR022, 2000

[7] Sana Abiad, Ramzi A. Haraty and Nashat Mansour, Software metrics
for small database applications, ACM Symposium on Applied Computing,
Como, Italy, pp 866-870, 2000

[8] Roger S. Pressman, Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 1996

[9] Sandra Slaughter, Assessing the use and effectiveness of metrics in informa-
tion systems: a case study, Proceedings of the 1996 ACM SIGCPR/SIGMIS
conference on Computer personnel research, pp 384-391, 1996

[10] David Bellin, Manish Tyagi and Maurice Tyler, Object-oriented metrics:
an overview, Proceedings of the 1994 conference of the Centre for Advanced
Studies on Collaborative research, Toronto, Ontario, Canada, 1994

[11] Lem O. Ejiogu, A unified theory of software metrics, Proceedings of the
1988 ACM sixteenth annual conference on Computer science, pp 232-238,
1988

[12] Dennis Kafura, A survey of software metrics, Proceedings of the 1985 ACM
annual conference on The range of computing : mid-80’s perspective, Den-
ver, Colorado, pp 502-506, 1985

[13] Dennis Kafura and James Canning, A validation of software metrics us-
ing many metrics and two resources, International Conference on Software
Engineering, London, England, pp 378 - 385, 1985

[14] J. E. Gaffney, Metrics in software quality assurance, Proceedings of the
ACM CSC-ER ’81 conference, pp 126-130, 1981

15


